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SUMMARY

The interplay between inertia and elasticity is examined for transient free-surface �ow inside a narrow
channel. The lubrication theory is extended for the �ow of viscoelastic �uids of the Oldroyd-B type
(consisting of a Newtonian solvent and a polymeric solute). While the general formulation accounts for
non-linearities stemming from inertia e�ects in the momentum conservation equation, and the upper-
convected terms in the constitutive equation, only the front movement contributes to non-linear coupling
for a �ow inside a straight channel. In this case, it is possible to implement a spectral representation
in the depthwise direction for the velocity and stress. The evolution of the �ow �eld is obtained lo-
cally, but the front movement is captured only in the mean sense. The in�uence of inertia, elasticity
and viscosity ratio is examined for pressure-induced �ow. The front appears to progress monotoni-
cally with time. However, the velocity and stress exhibit typically a strong overshoot upon inception,
accompanied by a plug-�ow behaviour in the channel core. The �ow intensity eventually diminishes
with time, tending asymptotically to Poiseuille conditions. For highly elastic liquids the front move-
ment becomes oscillatory, experiencing strong deceleration periodically. A multiple-scale solution is
obtained for �uids with no inertia and small elasticity. Comparison with the exact (numerical) solution
indicates a wide range of validity for the analytical result. Copyright ? 2004 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

The �ow of a thin �lm inside cavities is of relevance to lubrication, injection molding and
die casting problems. Despite the wide body of studies in the literature, the modelling and
simulation of �lm �ow remain challenging under conditions where non-linear e�ects are im-
portant. Non-linearities may stem from material behaviour such as inertia or non-Newtonian
(shear-thinning and viscoelastic) e�ects, or from geometry such as in the presence of a
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moving free surface or interface. The interplay between material and geometric non-linearities
is the focus of the present study, which is examined during the development of early transient
free-surface �ow of a viscoelastic �uid inside a narrow channel under the action of a driving
pressure.
Regarding the simulation of free surface �ow of viscoelastic �uids, one is faced, on the one

hand, with the incapacity of conventional domain methods to deal with the issue of adaptive
meshing for moving-boundary �ows [1], and, on the other hand, with the failure of integral
methods to deal with non-linearities [2]. Due to limited computational resources, the three-
dimensional �ow problem has customarily been simpli�ed to a two-dimensional problem,
based on the observation of Hele-Shaw [3]. The method is closely related to the lubrication
or shallow-water theory for Newtonian �ow. In this approach, the cavity is assumed to be thin,
and out of plane �ows are neglected. Richardson [4] was the �rst to propose this method for
molding �ow. He examined Newtonian, isothermal �ow inside cavities of simple geometry.
Three decades later, the lubrication assumption remains the basis for the simulation of free
surface �ow of thin �lms [5–7]. Whilst all of the related mathematical models used in the
literature stem from the common (and justi�able) assumption of constant pressure distribu-
tion in the depthwise direction, further restrictive assumptions, which are usually introduced
without quantitative justi�cation, result in the creation of mathematical formulations with dif-
ferent capabilities. In particular, (i) formulations in which the depthwise distribution of the
streamwise velocity component is variable and allows the study of return �ows [8], and (ii)
formulations in which only the mean streamwise velocity is considered [9].
Although the thin-�lm formulation reduces the pressure to its hydrostatic part, thus

eliminating the momentum equation in the depthwise direction from the problem, the di-
mension of the problem remains the same as the original equations. The dimension of the
problem is reduced by imposing an approximate (usually parabolic) �ow pro�le in the depth-
wise direction. However, such a pro�le is not valid under all �ow conditions, such as in the
presence of end e�ects, for a turbulent �ow or at high Reynolds number [10–12], or, very
likely, when other non-linear e�ects such as shear-thinning or viscoelastic e�ects are included.
A more rigorous solution procedure to the lubrication equations becomes almost as di�cult
to achieve as to the original Navier–Stokes equations. Recently, Khayat proposed an accurate
low-dimensional spectral approach to the �ow of a thin coating �lm over two-dimensional
substrates of arbitrary shape [13]. The study, however, is limited to Newtonian �uids.
The present paper addresses the solution of a large class of free-surface �ows with close

relevance to materials processing. Since both inertia and viscoelastic e�ects are included, the
work is equally relevant to die casting and injection molding. These problems are typically
concerned with the �lling stage inside a thin cavity and die �ow. The lubrication assumption
is adopted to derive the resultant equations for an Oldroyd-B �uid. A spectral representation
of the velocity and stress is assumed. The in�uence of inertia and elasticity on the evolution
of the front, the shear and normal forces for a �ow in a narrow channel is examined in some
detail. The solution for an inertialess (purely elastic) �uid is also obtained using the method
of multiple scales.

2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

In this section, the generalized lubrication equations and boundary conditions are derived for
narrow channel �ow of a viscoelastic �uid. The solution procedure is then outlined.
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TRANSIENT FREE-SURFACE FLOW 639

2.1. General lubrication equations for an Oldroyd-B �uid

Consider an incompressible viscoelastic �uid of density �, relaxation time �, viscosity �, and
surface-tension coe�cient �. In this study, only �uids that can be reasonably represented by
a single relaxation time and constant viscosity are considered. Regardless of the nature of
the �uid, the continuity and momentum balance equations must hold. If (x1; x2) denotes the
two-dimensional system of coordinates, then the conservation equations for an incompressible
�uid can be concisely written as:

uj; j=0; �(ui; T + ujui; j)=�ji; j (1)

where i; j=1; 2. Here the summation convention is assumed, and a comma denotes partial
di�erentiation. T is the time, and �ij are the components of the total stress tensor that is
assumed to be symmetric. In the present work, the deviatoric part of the stress tensor is taken
to be composed of a Newtonian component, corresponding to the solvent, and a polymeric
component, �ij, corresponding to the solute. Thus,

�ij=−��ij + �s(ui; j + uj; i) + �ij (2)

where � is the hydrostatic pressure, and �s is the viscosity of the (Newtonian) solvent. The
constitutive equation for �ij corresponds to an Oldroyd-B �uid, which can be written as [14]:

�(�ij; T + uk�ij; k − �ikuj; k − �jkui; k) + �ik = �p(ui; j + uj; i) (3)

where �p is the viscosity of the polymeric solute. Thus, the viscosity of the solution is
given by �= �s + �p. In the limit �s → 0, system (1)–(3) reduces to that corresponding to a
Maxwell �uid. On the other hand, in the limit �s → ∞, the equations for a Newtonian �uid are
recovered. This is also equivalent to setting the relaxation time, �1, equal to the retardation
time, �2, of the �uid [14]. Note that �1 = �; �2 = �(�s=�s + �p), so that �26�1.
The equations above are now formulated in the narrow-gap limit. It is convenient to cast

Equations (1) and (3) in terms of dimensionless variables. Typically, in thin-cavity �ow, there
are two characteristic lengths, L, in the streamwise direction, x1, and a height, H , representing
the thickness of the cavity in the depthwise direction, x2. Figure 1 illustrates schematically the
general �ow and notations used. The dimensionless variables may be introduced as follows:

x=
x1
L
; z=

x2
�L
; t=

L
V
T

ux=
u1
V
; uz=

u2
V�
; p=

�2L
�V
�

�xx=
�2L
�V
�11; �zz=

L
�V
�22; �xz=

�L
�V
�12

(4)

where �=H=L is the aspect ratio, and V is a typical (reference) velocity. In addition to �, there
are three important dimensionless groups, namely, the Reynolds number, Re, the Deborah
number, De, and the solvent-to-solute viscosity ratio, Rv. These parameters are explicitly
written:

Re=
�VL
�
; De=

�V
L
; Rv=

�s
�p

(5)
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Figure 1. Schematic view and notations used for typical moving-boundary �ow inside a thin channel.

In dimensionless form, and if terms of O(�2) and higher are excluded, then Equation (1)
reduce to:

ux; x + uz; z=0 (6)

�2Re(ux; t + uxux; x + uzux; z)=−p;x + aRvux; zz + �xx; x + �xz; z ; p; z=0 (7)

The term �2Re is not necessarily negligible since Re may be large enough for the term to
be of order one. In this work, inertia e�ects will be accounted for to cover a wide range of
applications. The resultant stress equations are given by:

De(�xz; t + ux�xz; x + uz�xz; z − �xxuz; x − �zzux; z) + �xz = aux; z (8a)

De(�xx; t + ux�xx; x + uz�xx; z − 2�xxux; x − 2�xzux; z) + �xx = 0 (8b)

De(�zz; t + ux�zz; x + uz�zz; z − 2�zxuz; x − 2�zzuz; z) + �zz = auz; z (8c)

where a=1=(Rv+1). The scaling with respect to �2 for the pressure and normal stress, and �
for the shear stress, results from the balance of the linear and non-linear terms in the momen-
tum and constitutive equations. The Navier–Stokes equations are recovered from Equations
(6)–(8) by taking the limit Rv→ ∞, which corresponds to taking an in�nite viscosity for
the solvent. In this limit, the linear terms in velocity on the right-hand side of Equations
(8) vanish, and the polymeric stress equations admit zero-stress solutions. Since the product
aRv=1 when Rv is in�nite, the momentum equation reduces to the Newtonian form.

2.2. Boundary conditions

Stick boundary conditions are applied at the bottom and upper channel surfaces. The �ow is
assumed to be driven by the action of an imposed pressure at the channel entrance x=0. The
pressure is maintained �xed at all time. This corresponds typically to the inlet condition in
injection molding where the pressure rather than the �ow rate may be �xed at the source of
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TRANSIENT FREE-SURFACE FLOW 641

�uid. If the front pro�le is given by x=f(z; t), then the kinematic boundary condition may
be written as:

ux(x=f; z; t)=f; t(z; t) + uz(z; t)f;z(z; t) (9)

An important expression for the velocity at the channel entrance is obtained upon integrating
Equation (6) over the range x∈ [0; f] and using relation (9), namely,

ux(x=0; z; t)=f; t(z; t) +
@
@z

∫ f(z; t)

0
uz(x; z; t) dx (10)

In thin-�lm or lubrication theory, the depthwise velocity is one order of magnitude
smaller than the streamwise component, as (4) indicates, and is often neglected. In this case,
Equation (10) suggests that the velocity at the channel entrance is equal to the rate of front
movement. Note that the integration of Equation (10) over the channel depth leads to another
important relation between the mean velocity at x=0 and the rate of change in mean front
position (see below).
The imposition of a suitable dynamic condition is not obvious for thin-�lm �ow. Let n(z; t)

and s(z; t) be the normal and tangent unit vectors at the front. The dynamic condition at
x=f(z; t), becomes

(2aRv�2ux; x + �xx)sxnx + �2(2aRvuz; z + �zz)sznz

+ �[aRv(ux; z + �2uz; x) + �xz](sxnz + sznx)=0 (11a)

along the tangential direction, and

−p+ (2aRv�2ux; x + �xx)n2x + �2(2aRvuz; z + �zz)n2z

+2�[aRv(ux; z + �2uz; x) + �xz]nxnz=
�
Ca
(�nx; x + nz; z) (11b)

along the normal direction. Here Ca= �V=� is the capillary number. It should be emphasized
at this stage that an assessment of the order of magnitude for each term in Equations (11)
can be made only when the components of the unit normal vector (nx; nz) and unit tangent
(sx; sz) to the front are given. These components are expressed as

nx(z; t)=−sz(z; t)= �√
�2 + f2; z

; nz(z; t)= sx(z; t)=− f;z√
�2 + f2; z

(12)

where it is assumed that normal and tangent vectors can be de�ned everywhere along the front.
Conditions (11) reduce considerably when only leading terms are retained. Upon substituting
expressions (12), Equation (11a) is found to be identically satis�ed. Equation (11b) reduces
to an expression relating the pressure to surface tension e�ect, namely

p(x=f; z; t)=
�3

Ca
f;zf; zz (13)
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The resulting dynamic condition is the same as for Newtonian �ow. However, for viscoelastic
�uids, surface tension is typically small and Ca is of order 1 or higher [15]. In this case, it
is safe to neglect surface tension e�ect, leading to the vanishing of the pressure at the front
(see also below).

2.3. The reduced problem

In this study, the �ow is assumed by an imposed constant pressure gradient at the channel
entrance. In accord with the lubrication assumption, the pressure at x=0 is assumed to be
uniform along the depth. The entrance pressure, P(t), is maintained �xed at all time. This
corresponds typically to the inlet condition in injection molding where the pressure rather than
the �ow rate may be �xed at the source of �uid. Since the aim of the present work is to
explore the interplay of inertia and elasticity, the geometrical aspects become less signi�cant.
Thus, the channel will be assumed to be straight. In this case, the pressure decreases linearly
from P(t) at x=0 to zero at the front, x=X . Consequently, given the depthwise uniformity
of the pressure and pressure gradient, the evolution of the front can only be captured in
the average sense, again in accord with the lubrication formulation. Thus, the average front
position is de�ned by

X (t)=
∫ 1

0
f(z; t) dz (14)

The domain of computation is then (x; z)∈ [0; 1]× [0; X (t)]. In this case, L corresponds to the
initial (average) length.
The relevant equations for velocity and stress are deduced from Equations (6)–(8), namely,

�ux; t = aRvux; zz + �xz; z +
P
X

(15)

De�xz; t + �xz= aux; z (16)

De(�xx; t − 2�xzux; z) + �xx=0 (17)

where �= �2Re. In this case, �zz is identically zero, and �xx becomes the normal stress dif-
ference. Again, the Newtonian form of the above equations is recovered by taking the limit
Rv→ ∞. In this case, one recovers the lubrication equation that is identical to the channel
�ow equation with variable pressure gradient. In this case, the velocity and shear stress com-
ponents are decoupled from the normal stress. Although Equations (15) and (16) are linear
in velocity and stress, the problem is inherently non-linear because of the coupling with front
movement. The no-slip condition leads to:

ux(z=0; t)= ux(z=1; t)=0 (18)

The kinematic boundary condition also applies at the front, which reads:

Ẋ (t)=U (t)≡
∫ 1

0
ux(z; t) dz (19)

where a dot denotes total di�erentiation with respect to t, and U (t) is of course the mean
velocity at the front. The Newtonian and shear-thinning problem equivalent to (12)–(15) has
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TRANSIENT FREE-SURFACE FLOW 643

been addressed before in the literature, particularly in relation to injection molding. For more
details on this problem in channel and radial �ows, the reader is referred to the monographs
by Middleman [16] and Watson [17], and the references therein.
As to the initial conditions, it will be assumed that the �uid is initially at rest upon inception.

It will be assumed that the polymeric contribution to stress is negligible upon inception. Thus,

ux(z; t=0)= �xz(z; t=0)= �xx(z; t=0)=0 (20)

This is a realistic assumption since elastic e�ects are not expected to be signi�cant initially,
given the small shear and elongational �ows. Additionally,

X (t=0)=1 (21)

It is helpful at this stage to introduce the total shear stress as s(z; t)= aRvux; z(z; t) + �xz(z; t).
Also let the stresses at the wall z=0 be de�ned by S(t)= s(z=0; t); T (t)= �xz(z=0; t) and
N (t)= �xx(z=0; t). The solution to the initial-boundary-value problem above is discussed next.

2.4. Solution procedure

Since the normal stress is decoupled from the velocity and shear stress, a solution to
Equations (15) and (16) is sought in the form of Fourier series representation for the velocity
and shear stress, which satisfy conditions (18):

ux(z; t)=
M∑
n=1
unx(t) sin[(2n− 1)	z]; �xz(z; t)=

M∑
n=1
�nxz(t) cos[(2n− 1)	z] (22)

where M is the number of modes. The time-dependent coe�cients, unx and �
n
xz are clearly

governed by the equations:

�u̇nx=−(2n− 1)2	2aRvunx + (2n− 1)	�nxz +
4P
X

(23)

De�̇nxz = −�nxz + (2n− 1)	aunx (24)

which are obtained upon substituting expressions (22) into and projecting Equations (15)
and (16) onto each mode. In accord with (20), the coe�cients must be zero at t=0. Note
that a dot denotes di�erentiation with respect to time. In this case, Equation (19) reduces to

Ẋ (t)=
2
	

M∑
n=1

unx(t)
2n− 1 (25)

For a Newtonian �uid, the problem can be reduced to an integro-di�erential equation in X
(see below). It is observed that, even in this case, the direct solution of the system of ODEs
(23)–(25) is numerically much easier than the numerical solution of the integro-di�erential
equation, and thus the former route is the one that is taken in this study.
The expression for the normal stress follows from solutions (22) and Equation (21). Thus,

let

�xx(z; t)=
M∑
m=1

M∑
n=1
�mnxx (t) cos[(2m− 1)	z] cos[(2n− 1)	z] (26)
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where the coe�cients �mnxx (t) are governed by

De�̇mnxx =−�mnxx + 2De(2m− 1)	aumx �nxz (27)

Equations (23)–(25) and (27) constitute a set of 3M +1 degrees, which are solved subject to

unx(t=0)= �
n
xz(t=0)=0; X (t=0)=1 (28)

The time-dependent coe�cients and X (t) are obtained using a sixth-order Runge–Kutta scheme
(IMSL-DIVPRK). The accuracy of the solution was checked using Gear’s predictor-corrector
method (IMSL-DIVPAG). The results from both methods are essentially identical when the
same time increment is used. In both methods, a tolerance of less than 10−6 is used. That is,
the norm of the local error is controlled such that the global error is less than the tolerance
imposed. Additional accuracy assessment is reported below.

3. LIMIT FLOWS AND PRELIMINARY RESULTS

In anticipation of the numerical results for arbitrary values of the parameters, it is useful to
examine limit cases. These include the �ows of Newtonian �uids, purely elastic (inertialess)
�uids, and asymptotic �ow behaviour at large time for any �uid.

3.1. Newtonian �ow

The Newtonian limit corresponds to a solution with only the solvent (�p=0). This limit
is thus recovered by setting Rv→ ∞. In this case the product aRv=1, and a=0. These
limit values lead to the vanishing of the polymeric shear and normal stresses. For Newtonian
�ow, an integrating factor can be found, and the problem (23)–(24) is recast as a non-linear
integro-di�erential equation for X (t) if P(t) is prescribed, or an integral equation for P(t) if
the �ow rate is imposed. Thus, the problem reduces to

Ẋ (t)=
8
�

M∑
n=1

1
an

∫ t

0

P(�)
X (�)

e−an=�(t−�) d� (29)

where an=[(2n− 1)	]2. In the absence of inertia (�→ 0), the solution is easily obtained as

X (t)=

√
Pt
6
+ 1; U (t)=

P
12
√
Pt=6 + 1

(30)

Note that the initial velocity is not zero in general.

3.2. Purely elastic �ow

In the absence of inertia, elastic and viscous e�ects are the only balancing forces. This is an
important limit since most viscoelastic �uids exhibit very little inertia e�ect, at least under
normal �ow conditions. If �=0, Equation (15) is readily integrated, and the velocity and
shear stresses may be written as:

ux(z; t)=6U (t)(z − 1)z; �xz(z; t)=T (t)(1− 2z); �xx(z; t)=N (t)(1− 2z)2 (31)
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which, after some algebraic manipulation, give the following equation for X and corresponding
initial conditions:

12aRvDeX 2 �X + (12X 2 +DeP)Ẋ − (DeṖ + P)X =0 (32a)

X (t=0)=1; Ẋ (t=0)=
P(0)
12aRv

(32b)

Note that the initial velocity is no longer generally zero, and depends only on the viscosity
ratio. Similarly, the total shear stress experiences an initial jump equal to P(0)=2, which is
independent from �ow parameters. It is inferred from (32b) that the initial front velocity
behaves like 1=Rv for small Rv, and becomes singular in the limit of a Maxwell �uid. This
is an important feature that, as will be seen below, can have a drastic consequence on the
response of �uids with low solvent-to-solute viscosity ratio. Equation and conditions (32)
indicate that the front advancement depends only on the solvent-to-solution viscosity ratio,
aRv. The normal stress at the wall is given by

N (t)=2
∫ t

0
Ẋ (t′)

∫ t′

0
Ẋ (t′′)e(t

′′−t′)=De dt′′ dt′ (33)

For a Maxwell �uid (Rv=0), Equation (32) becomes singular, and the �uid experiences an
initial jump in the velocity. If, further, the driving pressure is constant, P(t)=1, the following
relation is obtained:

De ln X + 6X 2 = t + 6 (34)

It is interesting to note in this case that the behaviours at small and large time are similar. In
fact, for small t (t�6), X becomes close to 1 and X (t)∼

√
t=6 + 1, and for large t (t�6),

the quadratic term is also dominant with X (t)∼
√
t=6.

More generally, problem (32) must be solved numerically. However, for small Rv and=or
De, a multiple-scale solution is possible. As was mentioned earlier, the limit �ow of a purely
elastic �uid or inertialess �uid is singular near inception, and thus exhibit a behaviour of
the ‘boundary-layer’ type. Note that the initial acceleration is given by �X (0)=1=12aRvDe.
Consider then the solution of problem (32) for small Deborah number. Given the singularity
at De=0, a regular perturbation expansion in De is inadequate. Here the method of multiple
scales is used to obtain the solution as De→ 0. It is suspected, through simple inspection of
the governing equation, and as it is indeed con�rmed from the numerical solution below, that
the �ow exhibits a ‘boundary-layer’ of thickness De near t=0, and varies slowly in the range
De�t (De→ 0+). Thus, there are two natural scales for this problem, a short scale t′, which
describes the inner solution in the boundary layer, and a long scale t=De t′, which describes
the outer solution. Note that Equations (32) is written in terms of the long scale. An outline
for the solution for small De and P(t)=1 is given in Appendix A, with the result

X (t)=

√
t
6
+ d1 + d2e−t=aRvDe +O(De); De→ 0+ (35)

where d1 and d2 are constants given in Appendix A. It is interesting to observe from (A8)
and (35) that 1=aRvDe is a similarity parameter in the approximate solution, whereas it is not
in the original problem (32). This similarity has an important implication: One can expect
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the approximation to hold not only for small De, but for small aRvDe as well. Only the
Newtonian limit can be recovered from Equation (35) by setting De=0 and aRv=1. The
limit of a Maxwellian �ow cannot be recovered from Equation (35); by simply setting Rv→ 0,
one recovers again the Newtonian limit. This apparent paradox is resolved once one observes
that the Maxwellian limit presents a singularity near Rv=0. This �ow is recovered only if a
singular perturbation expansion, similar to the one near De=0, is applied near Rv=0.

3.3. Long-term �ow behaviour

Finally, consider the asymptotic behaviour of the �ow �eld and stress when t is large for any
�, De and Rv values. In this case, problem (15)–(19) admits a quasi-steady-state solution
upon setting the time derivatives equal to zero. It is not di�cult to see that the asymptotic
form of the velocity is the same as Poiseuille �ow, so that

ux(z; t)=
P
12X

z(1− z); �xz(z; t)=
aP
12X

(1− 2z); �xx(z; t)=
aDeP2

72X 2
(1− z)2 (36)

which upon substitution into (17), leads to the following equation for X :

Ẋ =
P
12X

(37)

Thus, the front moves at a velocity that decreases with front position. More speci�cally, the
asymptotic forms of the front position, velocity and polymeric stresses are given by

X ∼
√
Pt
6
; U ∼

√
P
2t
; T ∼ a

√
P
2t
; N ∼ aDeP

12t
(38)

It is interesting to note from (36) and (38) that, while the velocity and shear stress decay
like 1=

√
t, the normal stress decays like 1=t, at large t. It is also important to note that the

asymptotic behaviour of the front position and velocity is independent of �, Rv and De,
whereas that of the shear stress depends only Rv, and the normal stress depends on both De
and Rv. This universal asymptotic behaviour is further con�rmed by comparing expressions
(30), (35) and the asymptotic solution of Equation (38).

4. DISCUSSION AND RESULTS

In this section, the in�uence of inertia, elasticity, and viscosity ratio is examined for a �ow
induced by a driving pressure gradient at the channel entrance. In particular, the evolution of
the front position, front velocity, and stress buildup is explored in some detail. A multiple-
scale solution is also obtained in the limit of inertialess �uid, for small Deborah number.
Numerical accuracy and convergence are also assessed.

4.1. In�uence of inertia

The e�ect of inertia is examined by varying � and keeping the other parameters �xed. The
solvent-to-polymeric viscosity ratio and the Deborah number are �xed at Rv=1 and De=10,
respectively, and �∈ [0; 200]. The case of an inertialess �uid (�=0) is included for reference.
The simulation is carried out over a period of 100 time units; most of the interesting transient
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Figure 2. In�uence of inertia on the evolution of the front position for a �ow with De=10; Rv=1
and �∈ [0; 200]. Inset shows X against t=�.

behaviour occurs during this period. The evolution of the mean position of the front, X (t),
is shown in Figure 2, which displays a sharp increase in the early stages when � is small,
although the initial slope is zero except for �=0. The front position is a�ected signi�cantly
by inertia, especially in the initial stages. For an inertialess �uid, the �rst of conditions (18)
cannot be accommodated, and the �uid experiences instantaneous motion upon inception.
In this case, the front continuously decelerates with time, but eventually moves at constant
velocity. As � increases (from zero), the �uid remains at rest initially, accelerating, and
decelerating eventually similarly to inertialess �ow. Figure 2 shows that for large t, inertia
has essentially no e�ect, an observation that is anticipated from expressions (35). Finally, note
that the time scale used for t in the �gure is not most appropriate for quantitative assessment.
However, this scale allows ampli�cation of early behaviour. A more relevant (dimensionless)
time is t=�, which leads to the behaviour shown in the inset, re�ecting the faster movement
of the front as � increases. Inertia is observed to be less in�uential for large �.
The behaviour above is con�rmed from Figure 3, where the evolution of the front velocity,

U (t), is depicted. For �=0, the U exhibits an initial jump, which from Equation (29b), is
equal to 1

6 . Thus, in the absence of inertia, the �uid velocity adjusts instantly to the driving
pressure. In this case, and as illustrated in Figure 3, the front velocity decreases monotonically
with time. For � 	=0; U (t) increases rapidly initially, exhibiting growth typical of ‘boundary-
layer’ structure. U (t) reaches a maximum, Umax, then decreases monotonically with time,
eventually reaching the same asymptotic (at large t) behaviour as for a �uid without inertia,
as suggested by (35). The maximum decreases rapidly, becoming simultaneously weaker, as
� increases. The inset in Figure 3 shows the dependence of Umax and the time at which the
maximum occurs, tmax, on �. It is found that both Umax and tmax=� behave like �−1:8 and 3

√
�,

respectively. This behaviour appears to be consistent for other values of De and Rv, at least
over practical ranges of these parameters (see below). A closer quantitative understanding
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Figure 3. In�uence of inertia on the evolution of the velocity, U (t), of the front for a �ow
with De=10; Rv=1 and �∈ [0; 200]. Inset shows the dependence of the velocity maximum, Umax,

and correspondence time, tmax, on �.

Figure 4. Velocity pro�les, u(z; t), across half the channel depth for a �ow with
De=10; Rv=1 and �=100 for t ∈ [1; 60].

of the �ow �eld is inferred from Figure 4, where u(z; t) is plotted against the height over
the lower half of the channel, z ∈ [0; 0:5], for di�erent time stages, t ∈ [1; 60]. The parameter
values in this case are De=10; Rv=1 and �=100. The velocity exhibits a strong gradient
near the wall initially, which weakens with time. In the channel core a plug-�ow behaviour is
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Figure 5. In�uence of inertia on the evolution of the total shear stress, S(t), at the wall (z=0), for a
�ow with De=10, Rv=1 and �∈ [0; 200]. Inset shows the dependence of the velocity maximum, Smax,

and correspondence time, tmax, on �.

observed in the early stages. The �at pro�le in the core region progressively disappears, and
the �ow becomes increasingly stronger near z=0:5, but only to weaken again as anticipated
from Figure 2. The �ow eventually becomes parabolic as predicted by expressions (33).
A similar response is observed for the total shear stress, s(z; t)= aRvux; z(z; t) + �xz(z; t).

Figure 5 shows the evolution of the total shear stress at the wall, namely S(t)= s(z=0; t).
The stress exhibits initially a jump for �=0, which is independent of Rv and De, and is
equal to 1

2 , as mentioned in Section 3.2. Similar to the velocity, the maximum shear stress,
Smax, decreases monotonically with �. The inset indicates that Smax decreases with inertia
at a smaller rate than the velocity, namely like �−0:12, while the time at which the maxi-
mum occurs tmax=� behaves essentially similarly as before, like

3
√
�. The pro�les for s(z; t) in

Figure 6 correspond to those in Figure 4 (De=10; Rv=1 and �=100). Initially (t¡1), the
shear stress is essentially zero for z¿0:2, re�ecting the plug-�ow behaviour inferred from
Figure 4. As t increases (t¡10), the overall stress increases in the channel core and near
the wall. As t increases further, s behaves linearly with z, at which point the �ow begins to
behave like Poiseuille’s.
The behaviour of the polymeric stress, T (t), and normal stress, N (t), at the wall departs

somewhat from that of U (t) and S(t). Figures 7 and 8 depict the evolution of T and N
against time. There is a strong buildup of stress upon �ow inception, reaching a maximum,
to then decrease asymptotically with time, as suggested by (35). Since the pressure (drop) is
maintained constant, the normal force on the wall is directly dictated by normal stress. Thus,
Figure 8 indicates that the normal force on the channel wall increases as the front moves,
reaching a maximum that is not always increasing with inertia as one would anticipate. In
fact, there is an optimum � (in this case 50) for which the normal force is highest. Inertia
appears to in�uence similarly both the normal and polymeric stresses. This is not the case
regarding the in�uence of elasticity, which will be assessed next.
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Figure 6. Total shear stress pro�les, s(z; t), across half the channel depth for
a �ow with De=10,Rv=1 and �=100 for t ∈ [1; 60].

Figure 7. In�uence of inertia on the evolution of the polymeric shear stress, T (t), at the wall (z=0),
for a �ow with De=10; Rv=1 and �∈ [0; 200].

4.2. In�uence of elasticity

The in�uence of �uid elasticity is assessed by varying the relaxation time or De. Figure 9
depicts the evolution of the front position for the range De∈ [0; 100]; Rv=1 and �=100.
The front tends to accelerate signi�cantly as the level of elasticity increases. The change
in concavity indicates that the front eventually decelerates later for higher De, relaxing to
Newtonian behaviour, as suggested by (35). Thus, similar to inertia (Figure 2), elasticity
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Figure 8. In�uence of inertia on the evolution of the normal stress, N (t), at the wall (z=0), for
a �ow with De=10; Rv=1 and �∈ [0; 200].

Figure 9. In�uence of �uid elasticity on the evolution of the front position for
a �ow with �=100; Rv=1 and De∈ [0; 100].

tends to facilitate the �uid movement. The evolution of the front velocity (not shown) is also
inferred from Figure 9, exhibiting a sharp rise similar to Figure 3. However, the thickness of
the ‘boundary layer’, as well as the maximum velocity and the time at which it occurs are
essentially una�ected by the level of elasticity. Similar remarks may be made concerning the
total shear stress. However, the polymeric and normal stresses are worth examining closer.
The evolution of the polymeric shear stress and normal stress at the wall is shown in

Figures 10 and 11, respectively. Note that both T and N vanish when De=0. Although

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:637–661



652 R. E. KHAYAT AND R. PAN

Figure 10. In�uence of �uid elasticity on the evolution of the polymeric shear stress at the wall for a
�ow with �=100; Rv=1 and De∈ [0; 100].

Figure 11. In�uence of �uid elasticity on the evolution of the normal stress at the wall for a
�ow with �=100; Rv=1 and De∈ [0; 100].

elasticity is not expected to be in�uential at large t for T , as indicated by (35), it has a
signi�cant e�ect in the initial stages. As De increases, T decreases overall (from in�nity in
the limit De→ 0+), but eventually tends to level o� at large De. It is somewhat surprising
that the level of the polymeric shear stress decreases as De increase. This, however, can
be easily seen for the case of a purely elastic �uid (�=0). In this case, expressions (28)
lead to Tmax = aP=12X , which indicates that since X grows with time, so does the maximum
polymeric shear stress. This behaviour is in sharp contrast with that of the normal stress,
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Figure 12. Flow behaviour at small Deborah number in the absence of inertia. Comparison between the
multiple-scale and exact solution for X;U and T for Rv=1 and De=1 and 5.

which signi�cantly increases with De. Typically, N exhibits a maximum earlier than T . The
maximum is an indication of strong normal stress buildup in the moderately small De range
(De¡60), but the stress tends towards a constant level for large De (De¿60).
The in�uence of elasticity is further examined in the limit of an inertialess �uid (�=0).

In this case, an analytical solution can be found by using the multiple-scale outlined above
and in Appendix A. Solution (35) for the front position is practically insensitive to variation
in De for small De, including the limit De=0. This is expected since X (t) does not exhibit
a ‘boundary layer’ behaviour near t=0 (see Figures 2 and 9). In contrast, the front velocity,
U (t), and especially the normal stresses vary sharply with t near inception (see Figure 4).
The validity of the multiple-scale solution is assessed through comparison against the exact
(numerical) solution. Comparison is carried out for small De (1 and 5), with Rv=1. The
results are shown in Figure 12 for the approximate and exact solutions for X (t); U (t) and
T (t). In general, comparison between approximate and exact (numerical) solutions indicates
an excellent agreement in the lower range of De values. Even when De¿1, the �gure shows
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Figure 13. In�uence of viscosity ratio on the evolution of the front position for a
�ow with �=50; De=10 and Rv∈ [0; 1].

good agreement for X and U , although for this range of De values, the approximate so-
lution is not supposed to remain valid. The �gure shows a signi�cant discrepancy in the
stress, especially for De=5. The error is on the order of 5 and 20% for De=1 and 5, re-
spectively. The development of the boundary-layer region (near t=0) is at the origin of the
discrepancy.

4.3. In�uence of viscosity ratio

The in�uence of elasticity is now assessed by varying the solvent-to-polymer viscosity
ratio, Rv. In this section, the Deborah number is �xed at De=10, and the Reynolds number
at �=50. The viscosity ratio varies over the range Rv∈ [0; 1], and includes Maxwell’s �uid
(Rv=0). Although practical �uids may possess a relatively large viscosity ratio, it is generally
found that no new dynamics emerges for Rv¿1, except that the rate of damping increases.
Figure 13 displays the evolution of the front position, which re�ects the onset of oscilla-
tory motion as Rv is decreased towards zero. There is even a �attening of the X curve that
typically happens close to inception, and which is most evident for a Maxwell �uid. At this
point, the front essentially ceases to advance for some time until it is set in movement again
(by elastic stress). The picture becomes clearer once the front velocity is inspected from
Figure 14. The oscillatory response re�ects a strong undershoot, with U reaching almost zero
at the point where X is essentially �at. The oscillations decay with time, at a rate that increases
with Rv. Figure 15 shows the velocity pro�les for Rv=0:01 and t ∈ [1; 48], which illustrates
clearly the sustenance of the plug-�ow in the channel core over a long time (t¡10). The
velocity gradient at the wall is essentially the same. For t¿10, the �ow begins to behave like
Poiseuille’s, with decreasing velocity gradient and �ow intensity. At about t=32, the velocity
exhibits a maximum at around 0.2. The bulge disappears later on, and the �ow regains some
strength, but never recovering its maximum level reached at t=10.
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Figure 14. In�uence of viscosity ratio on the evolution of the front velocity for a
�ow with �=50; De=10 and Rv∈ [0; 1].

Figure 15. Velocity pro�les, u(z; t), across half the channel depth for a �ow with
De=10, �=50 and Rv=0:01 for t ∈ [1; 48].

The behaviour of the total and polymeric shear stresses, as well as that of the normal stress,
is very similar, and is typically illustrated in Figure 16 (see also Figure 18), which depicts
the in�uence of Rv on the evolution of T . The most striking feature in the �gure is the
emergence of singularities (discontinuities in Ṫ ) at the cusp(s) and trough(s) when Rv=0.
The occurrence of the singularities coincide with the change of concavity of U . Inspection of
Equation (14) clearly indicates that, since the shear stress remains �nite, the velocity gradient
becomes itself singular. Indeed, additional results show that, when Rv=0, the velocity u(z; t)
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Figure 16. In�uence of viscosity ratio on the evolution of the polymeric shear stress at the wall for a
�ow with �=50; De=10 and Rv∈ [0; 1].

Figure 17. Polymeric shear stress pro�les, �xz(z; t), across half the channel depth for a �ow with
De=10; �=50 and Rv=0:01 for t ∈ [1; 48].

becomes piecewise continuous, exhibiting a cusp at some z. The sharpness of the cusp is
signi�cantly reduced as Rv is slightly increased from Rv=0, leading to the emergence of
the maximum in u(z; t), earlier depicted in Figure 15. The pro�les for the polymeric stress
�xz(z; t) are shown in Figure 17 at di�erent times for Rv=0:01, over the lower half of the
channel. In the early stages, the stress typically remains zero over a signi�cant portion of
the channel, where the u(z; t) is �at, to then increase essentially linearly with t everywhere
in the channel. In particular, the stress �xz(z=0; t) at the wall increases linearly with time,
although the velocity gradient ux; z(z=0; t) remains unchanged (see the top of Figure 15). Thus,
most of the shear stress buildup at the wall originates from elastic e�ects. As t increases, the
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Figure 18. In�uence of the number of modes on the evolution of the normal stress at the wall for a
�ow with De=10; �=50 and Rv=0.

Table I. In�uence of the number of modes on the value of X; U; S; N and T at
t=100, for a �ow with De=10; �=50 and Rv=0.

M X U S N T

1 4.19127 0.01988 0.09748 0.19914 0.09748
5 4.21830 0.01998 0.11466 0.27574 0.11466
20 4.21859 0.01999 0.11825 0.29330 0.11825
100 4.21860 0.01999 0.11921 0.29810 0.11921

shear stress pro�le changes from positive to negative concavity at a time (t=16) when the
�ow begins to lose intensity, to eventually exhibit a linear dependence on z, as Poiseuille
conditions are recovered.
Finally, consider the in�uence of the number of modes on the convergence of the results.

Figure 18 shows the evolution of the normal stress at the wall, N (t), for M ∈ [1; 100]. In
this case, Rv=0; De=10 and �=50. This set of parameters have deliberately been selected
to illustrate the in�uence of M given the transient dynamics involved. It is found that even
with only one mode, the general qualitative picture is reasonably captured. Convergence is
essentially attained for M¿20. The normal stress is usually most sensitive to the number
of modes. The front position and velocity are the least a�ected by M . Table I displays the
values for X; U; S; N and T at t=100 for di�erent M , which illustrates the lower rate of
convergence for the stresses. In this study, all results reported are based on M =100.

5. DISCUSSION AND CONCLUSION

In this study, the lubrication equations are derived for transient free-surface �ow of Oldroyd-B
�uids in narrow channels. The scaling of the polymeric shear and normal stresses is dictated
by the upper-convective terms in the constitutive equations, and therefore may be di�erent if
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other constitutive models are used. The corresponding dynamic and kinematic conditions at
the front are also derived for a thin �lm, leading to the vanishing of the pressure at the front
(similarly to Newtonian �uids). The �ow is assumed to be induced by a pressure gradient that
is imposed at the channel entrance. In accord with the lubrication assumption, the pressure
varies only in the streamwise direction, and, consequently, the front advancement can only be
captured in the average sense in the depthwise direction, but the velocity and stresses can be
obtained locally. The equations are then reduced for the case of developing free surface �ow
inside a straight channel.
For a straight channel, the problem reduces to two linear equations for the streamwise

velocity component and polymeric shear stress, which are decoupled from the normal stress
equations. However, the problem remains inherently non-linear because of the coupling of the
�ow �eld with front advancement (though the pressure gradient). The solution is sought in the
form of Fourier representation for the velocity and stresses in the depthwise direction, which,
upon Galerkin projecting onto the various modes, leads to a coupled system with 2M + 1
degrees of freedom. The depthwise representation of the �ow �eld of a thin �lm remains an
open issue in the literature. A parabolic representation of the (streamwise) velocity compo-
nent is usually adopted, even for transient and non-linear �ows [10–12]. The �lm equations
are obtained by integrating (averaging) over the channel depth. It is generally found that the
depth-averaging procedure is valid for only a limited range of the Reynolds number. Addi-
tional calculations carried out but not reported in this study show indeed that the parabolic
representation for the velocity, and linear representation for stress, leads to reasonable agree-
ment with the Fourier solution over a wide range of the Reynolds and Deborah numbers for
the front position and velocity, but remains a relatively poor approximation for the polymeric
shear and normal stresses, especially in the initial stages of �ow inception. A similar spectral
representation has also been used previously for an open transient Newtonian �lm �owing on
a substrate of arbitrary shape in the presence of inertia [13], leading to a much better agree-
ment with Watson’s similarity solution for steady �lm �ow [17] than the depth-averaging
solution [10].
Preliminary results are �rst obtained for some limit �ows, namely the cases of a Newtonian

�uid, �ow with no inertia, and the general long-term behaviour for any �uid. The Newtonian
�uid corresponds to a solution of in�nite solvent viscosity (Rv→ ∞). In this case, the �ow
experiences an initial jump in velocity and stress that is proportional to the imposed pres-
sure. The mean front position, X (t), increases monotonically with time. For a purely elastic
or inertialess �uid (�=0), the problem is reduced to a second-order non-linear di�erential
equation in X . A multiple-scale solution is obtained in the (singular) limit De→ 0. Compar-
ison between the approximate and exact (numerical) solutions leads to excellent agreement
when De is small (¡5). A sharp increase of the initial �ow (velocity) is observed as the
motion sets in, which is only exhibited by the multiple-scale solutions, and which cannot be
recovered if a regular perturbation expansion is used in Re and De (see Figure 12). This is
also the case in the Newtonian limit, which shows an initial jump in the �ow. These observa-
tions are also con�rmed from the numerical solution, which shows that the initial increase in
�ow is diminished by the e�ect of �uid elasticity. The long-term (asymptotic) solution shows
that the �ow behaviour is universal or independent of the �ow parameters, as suggested by
expressions (36) and (38).
The in�uence of inertia is examined by varying �, keeping De and Rv �xed. Generally,

the velocity and stresses exhibit an overshoot upon inception, to then decay asymptotically
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with time like a Newtonian �uid. The maxima reached by the velocity and total shear stress
(Figures 3 and 5) decreases monotonically like (inverse) power-laws in �, which are practically
unin�uenced by the values of De or Rv. The maxima reached by the polymeric and normal
stresses increase with inertia in the small � range (�¡50), but decrease with inertia for large �
(Figures 7 and 8). Upon inception, the velocity and stress pro�les across the channel depth hint
to a plug-�ow behaviour in the channel core, and gradually tend toward Poiseuille �ow with
time (Figures 4 and 6). Regarding the in�uence of elasticity, the maximum in normal stress
appears to grow monotonically with De, whereas that in the polymeric shear stress decreases
with De (see Figures 10 and 11). The in�uence of elasticity is best illustrated by varying the
viscosity ratio. It is found that for a small Rv value, the �ow exhibits oscillatory response
(see Figures 13 and 14), despite the static driving conditions. The plug-�ow behaviour in the
channel is clearly evident in this case (see Figure 15), and the velocity pro�le exhibits even
a maximum close to the wall, which eventually disappears with time, when the �ow recovers
the parabolic pro�le.
The present study lays the mathematical foundation for the �ow inside narrow channels of

general shape. More importantly, the study elucidates clearly the conditions when complex
dynamics can emerge, despite the simplicity in geometry and driving conditions. In particular,
it is clearly shown that oscillatory behaviour for statically stressed �ow, which result from
�uid elasticity, arise only if both inertia and elasticity are signi�cant.

APPENDIX A: MULTIPLE-SCALE SOLUTION

In order to use multiple-scale theory, Equation (29) must be rewritten in terms of the short
scale, t′. This form allows the elimination of the secularity on the long scale:

12aRvX 2X ′′ + (12X 2 +De)X ′ −DeX =0 (A1)

where a prime denotes (total) di�erentiation with respect to t′. Formally, X (t′) in
Equation (A1) has a perturbation expansion of the form:

X (t′; t)=X0(t′; t) +DeX1(t′; t) +O(De2); De→ 0+ (A2)

Using the chain rule for the �rst and second derivatives, and collecting powers of De, give,
to leading order, De0:

X0; t′t′ + 
X0; t′ =0 (A3)

which admits the following solution:

X0(t′; t)= c1(t) + c2(t)e−
t
′

(A4)

where 
=1=aRv=Rv+ 1=Rv. To next order, De1:

X1; t′t′ + 
X1; t′ =−2X0; tt′ − 
X0; t − 

12X 20

(X0; t − X0) (A5)
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Substituting expression (A4) into the right-hand side of Equation (A5), and integrating once,
leads to the following equation for X1:

X1; t′ + 
X1 =


12

[(
1
c1

− 12ċ1
)
t′ +

1

c1

ln(c1 + c2e−
t
′
) +

1
c1 + c2e−
t

′ − 12


ċ2e−
t

′
]

(A6)

The particular solution for Equation (A6) indicates the presence of a secular term that grows
like t′, and another that behaves like t′e−
t

′
. The �rst secular term is eliminated by setting

ċ1 − 1
12c1

= 0 with solution c1(t)=
√
t
6
+ d1 (A7)

where d1 is a constant. It is not necessary to eliminate the second secular term since it decays
exponentially with increasing t′. Recall that t′= t=De. Therefore, for all t¿0, it is valid to
set ċ2(t)=0 or c2(t)=d2, where d2 is a constant. Upon imposing initial conditions X (0)=1
and Ẋ (0)=0, the following expressions are obtained for the constants:

d1 =
1
4

(
1±

√
1− De

3


)2
; d2 =

De
12


√
d1

(A8)

Although both branches give a real value for d1, only the (+) branch reduces to the Newtonian
limit as De→ 0; it is thus this branch that will be kept. Finally, the solution to Equation (29)
becomes, to leading order in De:

X (t)=

√
t
6
+ d1 + d2e−
t=De +O(De); De→ 0+ (A9)

where the expressions for d1 and d2 are given in (A8).
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